Ctree procedure
## Loading required package: grid
## Loading required package: libcoin
## Loading required package: mvtnorm
titan$Survived <- as.factor(titan$Survived)
titan$Class <- as.factor(titan$Class)
titan$Sex <- as.factor(titan$Sex)
titan$Age <- as.factor(titan$Age)
tree <- ctree(Survived~Class+Sex+Age,data=titan)
plot(tree)

plot(nodeprune(tree,c(3,10)))

pred2 <- predict(tree)
mean(pred2 == titan$Survived)
## [1] 0.7882781
table(pred2,titan$Survived)
##
## pred2 No Yes
## No 1470 446
## Yes 20 265
Trees for continuous variables
bwght$smokes <- as.numeric(bwght$cigs>0)
bwght$smokes <- as.factor(bwght$smokes)
plot(ctree(bwght~cigs+faminc+male+white,data=bwght))

plot(ctree(cigs~faminc+white,data=bwght))

plot(ctree(smokes~faminc+white,data=bwght))

plot(ctree(wage~educ+exper+tenure,data=wage1))

GLM trees
glmtree(wage~educ+exper+tenure,data=wage1)
## Generalized linear model tree (family: gaussian)
##
## Model formula:
## wage ~ 1 | educ + exper + tenure
##
## Fitted party:
## [1] root
## | [2] educ <= 15
## | | [3] tenure <= 3
## | | | [4] exper <= 7
## | | | | [5] educ <= 11: n = 37
## | | | | (Intercept)
## | | | | 2.932432
## | | | | [6] educ > 11: n = 74
## | | | | (Intercept)
## | | | | 3.996351
## | | | [7] exper > 7: n = 145
## | | | (Intercept)
## | | | 4.762759
## | | [8] tenure > 3
## | | | [9] educ <= 10: n = 34
## | | | (Intercept)
## | | | 4.752941
## | | | [10] educ > 10
## | | | | [11] tenure <= 14: n = 106
## | | | | (Intercept)
## | | | | 6.419811
## | | | | [12] tenure > 14: n = 31
## | | | | (Intercept)
## | | | | 9.096774
## | [13] educ > 15
## | | [14] tenure <= 6: n = 74
## | | (Intercept)
## | | 7.614865
## | | [15] tenure > 6: n = 25
## | | (Intercept)
## | | 13.028
##
## Number of inner nodes: 7
## Number of terminal nodes: 8
## Number of parameters per node: 1
## Objective function (negative log-likelihood): 1198.485
glmtree(wage~exper+tenure|educ,data=wage1)
## Generalized linear model tree (family: gaussian)
##
## Model formula:
## wage ~ exper + tenure | educ
##
## Fitted party:
## [1] root
## | [2] educ <= 15
## | | [3] educ <= 11: n = 116
## | | (Intercept) exper tenure
## | | 3.446722837 0.001429165 0.098414049
## | | [4] educ > 11: n = 311
## | | (Intercept) exper tenure
## | | 4.602945302 0.008918606 0.177646112
## | [5] educ > 15
## | | [6] educ <= 16: n = 68
## | | (Intercept) exper tenure
## | | 6.46734370 0.05487934 0.21869650
## | | [7] educ > 16: n = 31
## | | (Intercept) exper tenure
## | | 7.3390757 0.1250740 0.3436781
##
## Number of inner nodes: 3
## Number of terminal nodes: 4
## Number of parameters per node: 3
## Objective function (negative log-likelihood): 1282.396
glmtree(wage~tenure|educ,data=wage1)
## Generalized linear model tree (family: gaussian)
##
## Model formula:
## wage ~ tenure | educ
##
## Fitted party:
## [1] root
## | [2] educ <= 15
## | | [3] educ <= 11: n = 116
## | | (Intercept) tenure
## | | 3.46782663 0.09990147
## | | [4] educ > 11: n = 311
## | | (Intercept) tenure
## | | 4.7189951 0.1850875
## | [5] educ > 15
## | | [6] educ <= 16: n = 68
## | | (Intercept) tenure
## | | 6.8591275 0.2857908
## | | [7] educ > 16: n = 31
## | | (Intercept) tenure
## | | 8.2314959 0.4412689
##
## Number of inner nodes: 3
## Number of terminal nodes: 4
## Number of parameters per node: 2
## Objective function (negative log-likelihood): 1283.494
glmtree(wage~educ+exper+tenure|nonwhite+female+married,data=wage1)
## Generalized linear model tree (family: gaussian)
##
## Model formula:
## wage ~ educ + exper + tenure | nonwhite + female + married
##
## Fitted party:
## [1] root
## | [2] female <= 0
## | | [3] married <= 0: n = 86
## | | (Intercept) educ exper tenure
## | | -1.19319465 0.43687735 0.07595967 0.02451867
## | | [4] married > 0: n = 188
## | | (Intercept) educ exper tenure
## | | -2.92454292 0.69539837 0.02934353 0.16956272
## | [5] female > 0
## | | [6] married <= 0: n = 120
## | | (Intercept) educ exper tenure
## | | -2.858646997 0.561990263 0.009881087 0.191828643
## | | [7] married > 0: n = 132
## | | (Intercept) educ exper tenure
## | | 0.5485905116 0.3253589998 -0.0005633994 -0.0036062743
##
## Number of inner nodes: 3
## Number of terminal nodes: 4
## Number of parameters per node: 4
## Objective function (negative log-likelihood): 1253.491